Kai-Feng Chen National Taiwan University

SPECIAL TOPICS IN EXPERIMENTAL PARTICLE PHYSICS

Lecture 5: The quark on the Top

THE TOP QUARK

THE TOP QUARK

Top quark is heavy

- The **heaviest** known point-like particle; ~36 times heavier than the bottom quark. *Any particular reason?*
- Mass from Yukawa coupling in SM, strongly coupled with the Higgs boson. Play a significant role in the Higgs physics.

Top quark is short lived

- Lifetime is calculated to be very short, $\tau \sim 5 \times 10^{-25}$ sec.
- It decays before hadronization the only "free" quark no bound states exist (ie. no mesons nor baryons with top).

Decay to the final products without any dilution: allow experimentalists to access to the quark properties directly!

TOP PHYSICS AT LHC

Precision measurement of top cross section.

- Top production rate at high center of mass energy.
- Large top production rate at LHC A TOP QUARK FACTORY
 - Use top quark as a calibration source (e.g., a very clean source of b-jet).
 - High precision determination of top quark mass.
 - Test of spin/polarization, asymmetries, etc.
 - Probing electroweak couplings and top rare decays.
- New physics heavier than the top quark
 - Heavy new particles decay with (high-*p*_T) top in the final state.

Total **>10 M** top quark pairs have been produced at ATLAS & CMS

TOP PHYSICS AT LHC

TOP PAIR PRODUCTIONS

7

- Top quark pairs are produced *strongly* with quark-antiquark annihilation or gluon-gluon fusion.
 - Final states are categorized by W decay products: dilepton/lepton+jets/all-hadronic jets

Top Pair Decay Channels

A TOP PAIR CANDIDATE (FROM CMS)

CMS Experiment at the LHC, CERN Sun 2010-Jul-18 11:13:22 CET Run 140379 Event 136650665 C.O.M. Energy 7.00TeV

TOP-PAIR PRODUCTION CROSS SECTIONS

TOP-PAIR PRODUCTION CROSS SECTIONS

Experimental precisions already reach ~4%, comparable to the precision of NNLO+NNLL theoretical calculations ~5%

LHC measurements achieved better precision than Tevatron; already dominated by systematic uncertainties!

Excellent agreement for theoretical predictions and experimental measurements

DIFFERENTIAL KINEMATIC DISTRIBUTIONS

This data \Leftrightarrow TH inconsistency at higher p_T has been observed by both CMS and ATLAS.

Possible explanations/issues:

g

- Gluon density at large-x?
- Electroweak corrections?
- Other higher order effects?
- Hadronization?

ref. ATLAS arXiv:1407.0371

JET MULTIPLICITY

- Measuring additional jets multiplicity and other parameters can be used in the tuning of parton radiations used in the generator:
 - Renormalisation and factorization scale.
 - Jet matching (ME-PS matching) threshold in MadGraph.

MEASURING TOP MASS

- Top quark decays before its hadronization; one can measure the invariant mass of decay products, reflecting the narrow resonance of top itself.
- Methods:

14

- **Full reconstruction** of invariant mass the most powerful method.
- Partial reconstruction by fitting variables which are correlated to M_{top} (eg. lepton p_T end-point) – less powerful, but with different systematics.
- Indirect probing, e.g. through the cross-section, B-hadron lifetime, etc.

MEASURING TOP MASS

 l', q^{ν}

b

W⁺ _

Full reconstruction of the event kinematics!

Matrix element (DØ):

leading order matrix element to calculate event probability density.

Ideogram (CMS): kinematic fit to reconstruct M_{top}; likelihood function is used to test compatibility of kinematics with top decay hypothesis with every good permutation:

- Adopt a 2D fit to M_{top} and jet energy scaling factor (JSF) with Wmass constraint.
- **Template method** (ATLAS): Use MC template with different M_{top} input and maximize the consistency of data:
- 2D fit to extract M_{top}, JSF with M_W constraint.
- 3D fit to extract M_{top}, JSF and b-jet scaling factor.

ref. ATLAS, CDF, CMS, D0, arXiv:1403.4427

Consistency between measurements are excellent.

VERY RECENT TOP MASS RESULTS

ref. CMS PAS TOP-14-002

ref. CMS PAS TOP-14-001

VERY RECENT TOP MASS RESULTS

ref. D0 arXiv:1405.1756

 $M_{top} = 174.98 \pm 0.58(stat.) \pm 0.49(syst.)$

Precision ~0.43%

These recent measurements are almost at the same precision as the 2014 march average.

Some mild tensions $(1.5 \sim 3.0\sigma)$ between the March 2014 world average and the most recent DØ and CMS measurements, depending on systematic uncertainty treatments.

OTHER APPROACHES

- Extract the pole mass from inclusive production cross section.
- Fit to the kinematic distribution and extract the mass from end-point
 - Different systematics, no Monte Carlo calibration used.
- **B-hadron lifetime** from top events, which is linear dependent on M_{top}:
 - No jet reconstruction; but limited by top p_T model.

TOWARD THE FUTURE

ref. CMS-PAS-FTR-13-017

- Standard (full reconstruction) method may reach ~0.2 GeV experimental precision, if the understanding of radiation, jet fragmentation, nonperturbative QCD effects, etc. can be improved.
- Alternative methods may already reach sub-GeV precision with 300 fb⁻¹.

Expected precision on top mass (GeV)

	30 fb ⁻¹	300 fb ⁻¹	3000 fb ⁻¹
Standard met.	0.62	0.44	0.2
end-point met.	1.1	0.6	0.5
J/ψ method	1.8	0.8	0.6
L _{xy} method	1.3	0.6	0.4

SINGLE TOP PRODUCTIONS

- Single top-quark production via *electroweak charged current* processes. Many measurements can be carried out:
 - Cross sections, polarization, V_{tb}, etc.
 - Sensitive to many new physics models, e.g. W', charged Higgs.

Background to many searches (SUSY, etc.)

Production cross sections (pb)

	t-ch.	tW-ch.	s-ch.	ttbar
Tevatron	2.08	0.25	1.05	7.08
LHC 7 TeV	64.6	15.6	4.59	172
LHC 8 TeV	87.2	22.2	5.55	249

t-channel is the dominant process; At LHC tW-channel is favored, but s-channel is challenge.

T-CHANNEL SINGLE TOP

Fit to forward jet η distribution:

Inclusive single top @ LHC 8 TeV by CMS: s_{10^3} CMS, $v_{s=8}$ TeV, E=19.7 fb³, electron, 2-jet 1-tag $\sigma_{t-ch} = 83.6 \pm 2.3$ (stat.) ± 7.4 (syst.) pb $v_{Z+jets, dibosons}$ QCD multijet recision ~9.3% QCD multijet recision ~9.3% recision ~9.3%recisi

T-CHANNEL SINGLE TOP

- ATLAS performed a "fiducial" cross section measurement, which measures the cross section only in the visible phase space, minimize dependence on theoretical models.
- Single extraction via a likelihood fit to a neural network (NN) discriminant based on kinematic variables.

W-ASSOCIATED PRODUCTION

ref. ATLAS-CONF-2013-100

The cross section is negligibly small at Tevatron. Signature: almost top-pair with 1 b-jet missing. Large background from top pair.

ref. CMS PRL 112, 231802 (2014)

Analyses are carried out with dilepton final state + boosted decision tree (BDT) for background suppression. First observation (>5 σ) with 8 TeV data:

CMS 8 TeV: $\sigma_{tW} = 23.4 \pm 5.5 \text{ pb} [6.1\sigma]$ ATLAS 8 TeV: $\sigma_{tW} = 27.2 \pm 2.8 \pm 5.4 \text{ pb} [4.2\sigma]$

SUMMARY OF SINGLE TOP

- t- and tW-channel have been observed and the measured cross sections are in good agreement with TH predictions.
- The upper limits for s-channel have been evaluated.
- The charge asymmetry (top and anti-top) has been measured, can be used to constrain the PDF models.
- Determination of $|V_{tb}| \Rightarrow next slide$.

PROBING V_{tb}

The absolute value of the CKM element $|V_{tb}|$ can be determined with single top cross sections if

- $|V_{tb}| >> |V_{td}|, |V_{ts}|$

- Anomalous form factor $f_{LV} = 1$ (sure SM)

| $f_{LV} \cdot V_{tb}$ |² = σ^{exp}/σ^{th} where σ^{th} is the prediction with | V_{tb} |=1.

Precision reaches 4~5%!

Dominated by experimental uncertainty at this moment! Expecting to be improved in the future.

TOP QUARK DECAY

Top branching fraction to **bW**:

 $R = \frac{\mathcal{B}(t \to bW)}{\mathcal{B}(t \to qW)} = \frac{|V_{\rm tb}|^2}{|V_{\rm tb}|^2 + |V_{\rm ts}|^2 + |V_{\rm td}|^2} \quad \begin{array}{l} \text{Approach $V_{\rm tb}$ with}\\ \text{high precision!} \end{array}$

can be measured by counting **# of b-jets** from the **top pair** events.

TOP FCNC DECAY

CMS Preliminary, 19.1 fb⁻¹, vs = 8 TeV Events / 0.1 900 Othe 800E 700 nal(tuy) 1 pb 600 500 400 300 200 100 DATA/MC 0.6 2 0.4 0.6 0. BDT output for tuγ -0.4 -0.2 0.2 0.8 Λ

Best limit for each channel so for:

Channel	Best limit @ 95%
BR(t→ug)	< 0.0031% (ATLAS)
BR(t→cg)	< 0.016% (ATLAS)
BR(t→qZ)	<0.05% (CMS)
BR(t→uγ)	< 0.016% (CMS)
BR(t→cγ)	<0.18% (CMS)

Ref.

CMS PRL 112 (2014) 171802 ATLAS JHEP 1209 (2012) 139 ATLAS PLB 712 (2012) 351 CMS TOP-14-003

 ℓ^+, \bar{q}

TOP FCNC DECAY

SUMMARY

Top quark physics has reached excellent precisions —

- Top pair production cross sections have been well measured with all possible decay channel. The best precision from a single measurement already reaches ~4% uncertainty.
- Some tension between data and TH calculation shows in the top momentum distribution at LHC. New some more investigation from theoretical side.
- The mass of top is measured to very precision, ~0.5% precision, which provides a strong constraint in the SM.
- Single top production processes have been all discovered, and the measurements already provide a good constraint on V_{tb}.

After 20 years of top discovery, now the top quark has been detailed measured/tested. How to improve the systematic uncertainties is the crucial work in the near future!

BACKUP SLIDES