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3: PARAMETER ESTIMATION

STATISTICAL ANALYSIS
IN EXPERIMENTAL PARTICLE PHYSICS

Kai-Feng Chen

National Taiwan University



THEORY OF ESTIMATORS

» Estimation may be considered as the measurement of a
parameter (which is assumed to be fixed, but unknown value) based
on a limited number of experimental observations.

> Point estimation: determines a single value as close as
possible to the true value — for example a measurement of
physics parameter, such a mass, cross section, branching
fraction.

> Interval estimation: determines a range of values most
likely to include the true parameter value — for example an
estimation of upper/lower limits.

» The main subject here is what is the exact sense in which
“close” and “likely to include”!



STATISTICAL INFERENCE

Probal»

Data fluctuate according
to process randomness

THEORY
MODEL

THEORY
MODEL

Model uncertainty due to
fluctuations of the data sample



BASIC CONCEPTS

» To estimate a parameter, one first chooses a function of the
observations = a method for proceeding from the observations
to the estimate = the estimator.

» The numerical value yield by the estimator for a particular set
of observations is the estimate.

> Basic properties of estimator of concern:

- Consistency — if an estimator converge toward the true
value, as the number of observation increases.

- Unbiasedness — the deviation of the expectation of the
estimate from the true value is zero.

- (and more: robustness, efficiency, ...)



SIMPLEST EXAMPLE

» Remember the estimator is a function of a given sample whose statistical

properties are known, and is related to some parameters (denoted as 0) in
PDF.

> A minimal example:

Assume we have a Gaussian PDF with a known ¢ and an unknown u

A single experiment gives a measurement x, thus we estimate p as

est

p =X

The distribution of u* (repeating the
experiment many times) should give the
original Gaussian.

|24 X =yest

On average 68.27% of the experiments
will provide an estimate within the

est
range: y—-o<pu <pu+o

. est
And one can determine: y =y  =* o0




CONSISTENCY AND CONVERGENCE

> An estimator is called a consistent estimator if its estimates converge
toward the true value of the parameter as the number of observations
increases.

> 0, is an estimator of the random parameter 0 based on n observables.
For any £€>0, any n>0, and large number N exists, the convergence in
probability:

P60, —0| >¢)<n foralln>N

» This means that the 6, converges in probability toward 0 as n increases.

A

P(l0,, — 0] > ¢)

not satisfied satisfied

Ny N> n 6



BIAS AND CONSISTENCY

» Then how about unbiasedness? Let’s define the bias b of the
estimator 0 based on N observation as the deviation of the
expectation of 8 from the true value 0o:

by (0) = E(0) — 0y = E(0 — 00)

» An estimator is unbiased if b is zero for all N and 09, or E(0) =0,.

consistent & unbiased biased inconsistent
PDF as
functions
of O N N
> | <




THE LEAST SQUARES METHOD / CHI-SQUARE METHOD

» Consider a set of N independent observations of X, X5, ..., Xy, from a
distribution with expectations of E(X;, 6) and the covariance matrix V.
By minimizing the covariance form:

Q*=)> ) [X; - E(X;,0)](V H,[X; — E(X;,0)]

- [)_( —_E(X, N'VX - E(X,0)]

it provides an estimate of the unknown parameters .

» The least squares estimator is consistent, and unbiased.

» The covariance matrix V is not diagonal in general case. However if the
observations are independent, the covariance matrix is diagonal. In
this case the covariance form can be simplified to just sum of squares:

Y [X; — B(X;,0))2
Q2 — ; [ - E@) ) where o7 (0) = Vj,;

1



EXAMPLE: CORRELATED LEAST SQUARES

: 2 . : :
> Here are an easy example for calculating the value of x~ with covariance matrix:

example_01.cc

const double var_x[5] = {
const double var_y[5] = {
const double cov_yI[5]I[5]
{1.000, 0.020, 0.000, 0.000, 0.000},
{0.020, 0.485, 0.103, 0.000, 0.000}, chisqure(a,b)
{0.000, 0.103, 0.740, 0.170, 0.000},
{0.000, 0.000, 0.170, 0.316, 0.214},
{0.000, 0.000, 0.000, 0.214, 0.520}

0.000, 1.000, 2.000, 3.000, 4.000};
1.%51, 1.995, 3.088, 4.220, 6.553};

};

double model(double x, double a, double b)
{ return axx + b; }

?ouble chisq(double a, double b)
TVectorD vec(5);
for (int r=0; r<5; r++) {
double func = model(var_xI[rl,a,b);
vec(r) = func-var_ylrl;

}

TMatrixD cov(5,5);
for (int r=0: r<s5 re+) { Just make a 2D scan over

for(int c=0;c<5;c++) { the chisq() function!
) cov(r,c) = cov_ylrllcl;
}

return cov.Invert()xveckxvec;




THE MAXIMUM LIKELIHOOD METHOD

» Consider a set of N independent observations of X: X1, X5, ..., Xy. They can
be N events found in an experiment, and the joint PDF of X is

N
P(X|0) = P(Xy, Xs,.... Xn|0) = [] £(Xi10)
where f(X,0) is the PDF of any observation X. =

» When the variable X is replaced the observed data X", then P is no longer a
PDF. It becomes the likelihood function L, as a function of 6:
L(6) = P(X1)

X=X0
» The maximum likelihood estimate of the parameter 6 is that value for which

® [ J [ J L J [ J O
L has its maximum given the particular observation X .

» [f the number of observations N is also a random variable, the extended
likelihood function is can be introduced:

L(6) = p(N16) ] F(Xi[0)

In the most common case p

1s a Poisson distribution
10



THE MAXIMUM LIKELIHOOD METHOD (CONT.)

» In many cases it is convenient to take the logarithm, hence the
production of probability can be converted to a summation:

L(6) = In L(0) Hf(Xz'|‘9) = Zlﬂ f(Xi]0)

» The “best fit” parameters can be obtained by maximizing the (log)
likelihood function, or solving the likelihood equation as below:

0

B N
54 ;mf(xi, 0) = o, I L(X]0) =0

» ML has “very good” statistical properties: it’s consistency, efficient,
and robust.

» ML estimators may have some bias,but they should decreases as N
increases, if the selected PDF model is the correct one!

» Nevertheless the ML is the widest used parameter estimator.

11



INTERFACE WITH MINUIT

» Both the least squares estimator and maximum likelihood estimator
requires minimizing or maximizing a certain function. This operation can
be performed analytically, for the simplest cases, and numerically for
most of the cases.

» Minuit is historically (and still the case nowadays) the most used
minimization engine in the high energy physics.

» For the least squares estimator, this can be carried out by simply
. . 2, 2 .
supplying the corresponding Q™ (x~) function.

» For the ML estimator, it is common to supply —2InL instead. The negative
sign is required since Minuit always does minimizing, and the factor of
two will matches the supplied function as just sum of squares, if the
PDFs are all Gaussians:

N o remark: one can either gives minuit
(X — ) .
—2InL = g — + Const.  the scaled —2InL, or ask minuit to
i=1 do 1t for you!

12



LOWER BOUNDS FOR THE VARIANCE

» Let X be observations from a distribution, and the estimator 8. Hence the
likelihood function is denoted as L = L(X|0). We obtained the expression
for the bias, b = E(0) — 0y, where 0y is the true value.

» The variance of any consistent estimator is subject a lower bound, ie. the
Cramér-Rao bound,

» “Efficiency of estimator” is the ratio of this Crameér-Rao bound over the
variance.

» The efficiency of ML estimator is asymptotically 1 (when the size of
observations approaches infinite: N—).

- No other asymptotically unbiased estimator has asymptotic mean-
squared error smaller than the ML estimator.

13



ROBUSTNESS

» What kind of parameters can be estimated without an assumptions
about of the PDF form?

» How reliable are the parameter estimates if the form assumed for
the PDF is not quite correct? If the sample distribution has
(slight?) deviations from the model, some estimators may deviate
more or less than others from the true value.

- for example if the data includes some misinterpreted
observations (unexpected tails, etc).

» Robustness is taken to imply insensitivity to small deviations
from the underlying distribution assumed.

» Although robustness is practically important, but a full treatment
is beyond the scope of this lecture (as well as the reference books!)

14



ROBUSTNESS (CONT)

> As an example, how could one estimate (in a robust manner) the centre of a
distribution? Some examples of location estimators are:

- The mean is the expectation of the variable X;

- The median is the value X for which the cumulative distribution reached
0.5;

- The mode is that value of X for which the PDF has a maximum;

- The midrange is defined when the values of X are limited to [Xyin, Xmaxl,
and the midrange is (Xpin+Xmax)/2-

> Only for Gaussians, the mean is the optimal estimator (unbiased and minimal
variance). If the underlying distribution is not Gaussian, the mean is not be
best estimator anymore. Sometimes the median actually works better.

» Trimming — to avoid the effects of “tails”, one can remove the n/2 highest
and n/2 lowest values, and compute the centre of the remaining N-n
observations.

15



COMMENTS: MAXIMUM LIKELIHOOD PROPERTIES

» In general it is important to distinguish between the
asymptotic properties which hold for sufficiently large number
of observations (N—), and the finite sample properties.

» As mentioned already, the ML estimator is consistent,
asymptotically close to the true value, asymptotically unbiased.
The estimator is also asymptotically Normally distributed with
minimal variance, asymptotically efficient.

» In many cases, the asymptotic limit where these optimal
properties hold, but will be approached slowly. For the case of
finite N, ML estimator may not always have those optimal
properties, except the parent distribution of the observations
is of the exponential form.

16



COMMENTS: GAUSSIAN APPROXIMATION

» If we have a set of N independent measurements, whose PDFs are
identical and are Gaussian, we have the model

f(Xsp,0) = : (X_M)j

Voro " [‘ 202
» The likelihood function is

N
X; — 1)
—21nL:Z( UZM) + N(In27 4 21Ino)
i=1

» The maximum likelihood estimate can be performed by an analytical
minimization on u (assuming o is known):

N
1
est _ Xz . .
[ N ;:1 (Basically the sampling mean)

» If 0% is also unknown, the ML estimate of ¢” is:

1 N

(0% = N Z(X’L — %% (mean-squares)
i=1

This estimate can be demonstrated to have a bias of 0°/N. .



ERROR ESTIMATION

» There are two approaches to determinate parameter
uncertainties.

> Local error — the 2™ order partial derivatives with

respect to the fit parameters around the minimum:
62 In L MIGRAD/HESSE

C;l = command under

1
6’9186’] minuit
- Under Gaussian approximation it equals to the
covariance matrix;

- May lead to underestimated errors with finite
samples.

» Evaluation of -2InL values around the maximum
point of likelihood function. MINOS

- Leads to usual error matrix in a Gaussian model command under
minuit

- May lead to asymmetric errors.

18



ERROR ON MEAN?

» Let’s practice the calculation with second derivatives!

» Remember the likelihood function with the assumption of
Gaussian models:

—2In L = Z N(n2m +2Ilno)

» The error on the mean u can be estimated by

-1 _ 1 0% 1n L _ N
p 52 0112 52

» And it just gives us the usual estimation of “error on mean”:

19



ASYMMETRIC ERROR

» If the -2InL function is close to a parabolic shape, the derivatives
can be approximated by parameter excursion ranges.

> A “n-0” error can be determined by the range around the
Likelihood maximum for which the —2InL value increases by n*:

- The errors can be asymmetric for the positive and negative side!

- It 1s identical to the o of Gaussian PDF.

Basically this is

21InLt what minuit does

when you call the
MINOS command.

_21anax+ ]. """""""" A T . S
' | A(-2InL) =1

—2InL . > 0

20



EXAMPLE: SCAN OVER LIKELIHOGD FUNCTION

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

» Here are an example how to do a manual likelihood scan over a
selected parameter (take the ending example from the previous lecture):

partial example_02.cc

using namespace RooFit;

TFile *fin = new TFile("example_data.root");
TNtupleD*x nt = (TNtupleD *)fin—->Get(''nt");

RooRealVar mass('"mass","mass",0.,2.); - -
RooDataSet data('data","data",nt,RooArgSet(mass)); unbinned ML §it
example as befove

RooRealVar mu("mu","mu",1.0,0.5,1.5);

RooRealVar sigma('sigma",'"sigma",0.05,0.001,0.15);

RooGaussian gaus('gaus",'"gaus",mass,mu,sigma);

RooRealVar slope('slope",'"slope",-0.3,-10.,10.);

RooPolynomial linear("linear","linear",mass,RooArgSet(slope));

RooRealVar frac("frac","frac",0.2,0.,1.);
RooAddPdf model("model","model",Ro0ArgList(gaus, linear),RooArgList(frac));

RooFitResult *res = model.fitTo(data,Save(true),Minos(true));
RooAbsRealx nll = model.createNLL(data); «> cvedte -log(L)

TH1D *nll _scan = new TH1D("nll scan","Likelihood scan',200, 0.185, 0.22);
for(int bin=1; bin<=nll_scan—->GetNbinsX(); bin++) {

frac.setVal(nll scan->GetBinCenter(bin));
n1l_scan->SetBinContent(bin, (n1l1->getVal()-res—>minN11())*2.);

Fill the histogram w/ -2¥log(L/Lwax) 2



EXAMPLE: SCAN OVER LIKELIHOOD FUNCTION (CONT.)

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

» Plot it, and “verify” the MINOS errors. *

> i ? / -\ This band is fvom  /
Everything good/matched? (Be aware!) 8 the returned
MINOS evvors,

partial example_02.cc |

n1ll_scan->SetStats(false);

nll_scan—>SetLineWidth(2); _9 % : _

nll_scan->SetMinimum(-1.); ~ ‘OQ(L%?MQK)JiJ -------------------------------------------------------
nll_scan->SetMaximum(12.); RS == -—— == R R
nll—scan_>GetaniS( )_>SetTitle("fraC"); 0.185 '0.49' | '(').1lgé - '0!2' | '6.2loé — 'o.|21' | '6.2|1é 022
nll_scan—>Draw("axis"); frac
TBox box; o 7

box.SetFillColor(kRed-10);

RooRealVarx best frac = (RooRealVarx)res—>floatParsFinal().find("frac");

box.DrawBox(best_frac—>getVal()+best_frac->getErrorLo(),-0.5,
best_frac—->getVal()+best_frac->getErrorHi(),+12.);

TLine 1lin;

lin.SetLineColor(kGray+2);

lin.SetLineStyle(kDashed);

for(int n=0; n<=3; n++) lin.DrawLine(©.185,n%n,0.22,n%*n);

nll_scan->Draw("csame");

22



EXAMPLE: SCAN OVER LIKELIHOGD FUNCTION (ZOOM-IN)

» You may find the Minos error band does not fully match with
the cross points of —2In(L/Lmax) =1, if you zoom-in to the figure.

» This is due to the fact that we need to calculate profile
likelihood instead of a direct scan.




PROFILE LIKEHOOD

» When the likelihood function depends on multiple parameters, we
might be interested in only a subset of them. It is often possible to
reduce the uninteresting (nuisance) parameters by writing them as
functions of the parameters of interest only.

» This procedure is called concentration of the parameters and results
in the concentrated likelihood function, and most often called the
profile likelihood function.

» The idea of profile likelihood can also be used to compute confidence
intervals that often have better small-sample properties than those
based on asymptotic standard errors calculated from the full

likelihood.

» Results from profile likelihood analysis can be incorporated in
uncertainty analysis of model predictions.

24



PROFILE LIKEHOOD (CONT))

» When some of the parameters are “profiled” in this
likelihood scan, this means some (or all) other floated
parameters are changed according to the “maximized
likelihood” during the likelihood scan.

» In the previous example, all other parameters are staying at
the values from the first best fit with every parameter floated.

» In order to produce a proper profile likelihood function,
one can simply ask the Minuit to maximize the likelihood
function with respect to those uninterested parameters, while
the interested parameter set to its target value.

25



EXAMPLE: PROFILE LIKELIHOOD SCAN

> Just need to modity the code slightly, and run it for a while:

partial example_03.cc

TH1D *n1l_prof = new TH1D("n1l _prof","Profile likelihood",100, 0.185, 0.22);
for(int bin=1; bin<=n1l_scan->GetNbinsX(); bin++) {
frac.setVal(nll scan->GetBinCenter(bin));
frac.setConstant(true); ™ need +0 “QTt” at eadch ste?f
model.fitTo(data);
nl1_prof->SetBinContent(bin, (n11->getVal()-res—>minN11())*2.);
}

nll _scan->Draw("csame");
nl1_prof->SetStats(false);
nll_prof->SetLineWidth(2);
n11_prof->SetLineColor(kRed);
nll _prof->Draw("csame");

Now you can see a match

between the likelihood
function & MINOS errors!

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
0.185 0.19 0.195 0.2 0.205 0.21 0.215 0.22

frac

L e—— P

26



ERROR PROPAGATION

» Consider the case of estimating a set of parameter set and the

corresponding covariance matrix: 2
1 12

0= (0,,0,....0,) V=|012 o3

» And would like to convert to another set of parameters
62 012

2
n=m,n2,...,0n) H= 012 03

where they are known functions of input parameter set 0.

» One can take a linear approximation around the given central
values of 0, and estimate the slopes by Taylor expansion.

on; On; - where A is the Jacobian,
Hij = ; 00, 00, Vi or H=A"V A dn;/00; in the matrix form

27
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ERROR PROPAGATION (i)

» Example: consider a differentiable function f(a,b) of two variables a
and b. It can be expanded as

of . of,
= fo_l__aal 8[)

» If the variables a and b has the error of o, and o}, the combined error
on oy can be given by

2 (&f) 2 <<‘9f) o2 49 8f6‘f
F5\8a) %7 \on da Ob

according to the formulae given in the previous slide.

» Note if no correlation between a and b, the variance formula can be
simplified to the usual quadrature sum:

OFf\° %
Uf%\/(@i) 02—|—<a£> O'b

28



ERROR PROPAGATION (Ill)

> In most of the cases this is not so trivial, in particular if asymmetric
errors are in the consideration.

- Naive sum in quadrature of positive/negative errors leads to a wrong
estimate. Could be biased!

- A model of the non-linear dependence may be needed for quantitative
calculations.

» It would be much better to know the original PDF and propagate/
combine the information properly!

» Have to be very careful about interpreting the meaning of the result since
only the mean value and variance can be propagated in the linear way (as
introduced earlier), but not the most probable value.

» Tips: whenever possible, it would be better to use a single fit rather
than multiple cascade fits, and quote the final asymmetric errors only.

29






EXTENDED LIKELIHOOD

» As introduced earlier, if the number of observations N is also a random
variable, the extended likelihood function is the one to be used.

> In the case of Poissonian, with number of signal (S) and number of
background (B) processes:

(S + B)Ne~(5+8) &

L(X3; S, B,0) = N H[fSPS(Xi;H)JFﬁBPB(Xi;@)]
‘ i=1
: —(S+B) N -
Note the change of fractions _ € . .
(fs, fz) to the yields (S, B) NI H[SPS(X“ 0) + BPp(Xi; 0)

» The fit to be carried out simultaneously on S, B, and 6:

4 )

N
—2InL =25+ B+ Zln[SPS(Xi; 0) + BPp(X;;0)] —l)m >

\ 1=1

° ° )
N is a constant during

minimization. Can be dropped!

31



EXAMPLE: SCAN WITH EXTENDED LIKELIHOOD

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

> Let’s make a comparison the scanned curves between standard likelihood
and extended likelihood using the same model in the previous example.

partial example_04.cc

RooRealVar mass('mass",'"mass",0.,2.);
RooDataSet data('data","data",nt,RooArgSet(mass));

RooRealVar mu("mu","mu",1.0,0.5,1.5);

RooRealVar sigma(''sigma",'"sigma",0.05,0.001,0.15);

RooGaussian gaus(''gaus','gaus'",mass,mu,sigma);

RooRealVar slope('"slope","slope",-0.3,-10.,10.);

RooPolynomial linear("linear","linear",mass,Roo0ArgSet(slope));

RooRealVar ns('ns","# of signal",2000.,0.,20000.); w‘l-:\vie“ex-be:ded )

RooRealVar nb("nb","# of background",b8000.,0.,20000.); “3‘h°? hee

RooAddPdf model_ext("model ext",'"model w/ ext likelihood", nS % wb)
RooArgList(gaus, linear),Ro0ArgList(ns,nb));

RooFitResult xres_ext = model_ext.fitTo(data,Save(true),Minos(true));
RooAbsReal* nll_ext = model_ext.createNLL(data);

32



EXAMPLE: SCAN WITH EXTENDED LIKELIHOOD (CONT.)

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

» Perform the scan over number of signal instead of the fraction, and let

partial example_04.cc

the rest of parameters profiled.

TH1D xscan_ext = new TH1D("scan_ext","Extended likelihood",100, 1850., 2200.);
for(int bin=1; bin<=scan_ext—->GetNbinsX(); bin++) {
ns.setVal(scan_ext—>GetBinCenter(bin));
ns.setConstant(true);
model ext.fitTo(data);
scan_ext—>SetBinContent(bin, (n11_ext—>getVal()-res_ext—>minN11())*2.);

}

C e e e i
scan_std->Draw("csame"); -
scan_ext—>SetStats(false);
scan_ext—>SetLineWidth(2);
scan_ext—>SetLineColor(kRed);
scan_ext—>SetLineStyle(kDashed);
scan_ext—>Draw('"csame'");

The extended likelihood should give |
a lightly larger (correct!) error!

| | | | |
2100

1 1 | 1 1 1 1
2150 2200
frac

| | | | | | | |
1850 1900

| | | |
1950

| | | | | | | | |
2000 2050

33
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ADD CONSTRAINTS TO THE LIKELIHOOD

> If knowledge is available for some of the fit parameters, one can also
include this information into the likelihood.

» This can be incorporated by multiplying the constrained PDF to the
original likelihood. i.e. ' = L(X|0) Xp(4).

» As an example, consider the parameter A is to be constrained with a
Gaussian PDF with mean u, and oy:

P(A) = fF(Aspn,00) =

L (A — )’
V2o P 20%

» The minimization to be performed on the global likelihood function:

(A —mr)*

2 ™ o o o
5\

—2InL' = —-2InL —2In f(X\;ux,00) = —2In L A

» In this particular case the constraint term is nothing more than a sum of
squares. For non-Gaussian PDE it will result a different form for sure.

34



EXAMPLE: ADDING CONSTRAINT WITH ROOFIT

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

» An example of adding an external constraint to the likelihood fit
within RooFit framework:

400

The Signal 13 wider thawn it should be because
we constrained it to 3 wvyong value!

partial example_05.cc 250

200

Events /(0.02)

TFile xfin = new TFile("example_data.root"); 150

TNtupleD*x nt = (TNtupleD x)fin->Get('"nt"); '

RooRealVar mass('"mass'",'"mass",0.,2.); soF-

RooDataSet data('data",'"data",nt,RooArgSet(mass)); | TN TN
RooRealVar mu("mu","mu",1.0,0.5,1.5); e

RooRealVar sigma('sigma','"sigma",0.05,0.001,0.15);
RooGaussian gaus('"gaus",'"gaus'",mass,mu,sigma);
RooRealVar slope("slope",'"slope",-0.3,-10.,10.);
RooPolynomial linear("linear","linear",mass,Ro0ArgSet(slope));

RooGaussian cons(“cons","const. model",sigma,RooConst(0.08),RooConst(0.001));

RooRealVvar ns(''ns","ns",2000,0.,20000.); A Gaussian constraint Sov s‘\gwxa
RooRealVar nb('"nb","nb",8000,0.,20000.);

RooAddPdf model('"model","model",RooArgList(gaus, linear),RooArgList(ns,nb));
model.fitTo(data,Minos(true),ExternalConstraints(cons));

35



BINNED DATA

» Consider the case when the observations X; are numbers of events in
histogram bins.

» Generally the observations X; will have a multinomial distribution; in
the large number limit, the distribution becomes asymptotically
Gaussian.

> Neglecting the correlations, the quantity to be minimized is

X; — E X; — E )]?  In the case of many bins, p<1
Q’ Z S 020 ~ E(0)

1=1

» For practical reason, it is often to adopt the modified minimum chi-
square estimator, which is consistent with the estimator above in
the limit of large N: N

oy i E(9))

36



BINNED LIKELIHOOD METHOD

» Apply the maximum likelihood method to the binned observations,
the binned likelihood estimator can be realized by maximizing

N
InL =) X;InE(®)

» Asymptotically this estimator approaches to the previous chi-square
estimator. Generally the ML estimator has a better property (faster
converge, no problems with null bins, etc).

» When the Poisson distribution is considered for the yields, the
extended binned likelihood (given by Baker-Cousins paper) can be
expressed as N

InL=>) {E(f)) —XitXiln (E)((H))}

1=1

Remark: this does not work for the bins with fractional numbers.

37



WEIGHTED DATA

» For the least squares method, the formulation is more-or-less
straightforward: just imagine you have some “bigger” events and“smaller”

N 1 n; 2
Q2 — Z ? Zwij — b,
7=1

events:

=1 7

where b; is the expected content for i™ bin, w;; is the weight for jth out of
n; events in the i"™ bin.

» However it is rather tricky for maximum likelihood method with
weighted events. Even the likelihood function can be written as

N
InL = Z w; In P(X;;0)
1—=1
But the uncertainties of the floated parameters (covariance matrix)
cannot be calculated directly.

38



WEIGHTED DATA (CONT,)

» The leading correction of the covariance can be obtained by
Vi=v.ct.Vv
where V is the covariance calculated with the likelihood function

given in the previous slide, and C is the covariance calculated with
the likelihood function with the squared weights:

N
In L = Z w? In P(X;;0)
» And this is the reason why y01_1 may see this (strange?) message when
you carried out such a weighted likelihood fit with RooFit:

[#0] WARNING:InputArguments —— RooAbsPdf::fitTo(p2) WARNING: a likelihood

fit is request of what appears to be weighted data.
While the estimated values of the parameters will always be calculated
taking the weights into account, there are multiple ways to estimate the

errors on these parameter values...

For more details, please

check the F.James’s book
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EXAMPLE: FIT TO A WEIGHTED DATA

» Here are an example for how to deal with weighted data within RooFit:

partial example_06.cc

RooRealVar x("x","x",-5.,5.);
RooRealVar w("w","w", 0.,1.);

RooDataSet data('data",'"nomial data",RooArgSet(x));
RooDataSet data_wgt('"data_wgt","weighted data",RooArgSet(x,w),"w");
TRandom3 rnd; USing variable “w”
for (int i=0;1<1000;i++) { as the weight of the event
x.setVal(rnd.Gaus(0.,1.));
data.add(x);

x.setVal(rnd.Uniform(-5.,5.)); “.n -

' . X 1S dctudlly
\ data_wgt.add(x,TMath::Gaus(x.getVal(),0.,1.)); uniSormly distributed

Nominal random Weighted random

distribution distribution

X



EXAMPLE: FIT TO A WEIGHTED DATA (CONT,)

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

» Then if we fit to these two different data sets:

partial example_06.cc

RooRealVar mu("mu","mu",0.,-0.5,+0.5);
RooRealVar sigma('sigma","sigma",1.,0.8,1.2);

A RooPlot of "x"

D
o

- Nowinal

Events/(0.1)

6]
o

RooGaussian gaus('gaus",'gaus',x,mu,sigma); or
TCanvas *cl = new TCanvas("c1","c1",400,800); o
cl->Divide(1,2); 2of
cl->cd(1); 1£
gaus.fitTo(data,Minos(true)); :

RooPlotx framel = x.frame(); P
data.plotOn(framel);
gaus.plotOn(framel);
framel->Draw();

cl->cd(2);
gaus.fitTo(data_wgt,Minos(true));
RooPlot*x frame2 = x.frame();
data_wgt.plotOn(frame2);
gaus.plotOn(frame2);

frame2—>Draw() ; You should be able to find

the “warning” during the fit to
weighted data.




Time for a couple of extended examples!
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SIMULTANEQUS FIT

» It is very common to perform a fit with several different data sets
together, in order to extract a single common (physics) parameter.

> In this case, a simultaneous fit is the common/good solution.

» Surely one can, in principle, perform individual fits to different set of
events and take the average of the results.

- Depends on the chosen method, but the most simple way is to
assume the results are Normally distributed and average with
standard error propagation.

- This does not work with complicated (or multi-dimensional) cases
obviously.

» Within RooFit, a simultaneous fit can be implemented easily with a
RooSimultaneous model.
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EXAMPLE: SIMULTANEQOUS FIT

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

» A simple RooFit example code is as following, assuming to extract a
common “production cross section” out of two different channels:
// observables

partial example_07.cc
RooRealVar mass("mass“ "mass",0.,2.);

RooCategory channel( channel" "channel"); > vequive 3t |ledst owe d\scve-l;e

channel.defineType(" decayl",l); cateaory Sor definina “channe
channel. deflneType("decayZ",Z); dteqovy 5 Fin g cha \s”

// models for decay #1
RooGaussian chl_gaus('chl_gaus','"gaus",mass,chl_mu,chl_sigma);
RooPolynomial chl_Tlinear('chl_ llnear“,"linear",mass,RooArgSet(chl_slope));

// models for decay #2
RooGaussian ch2_gaus('ch2_gaus'",'"gaus",mass,ch2_mu,ch2_sigma);
RooPolynomial ch2_1linear('ch2_ llnear“,"linear",mass,RooArgSet(chZ_slope));

RooRealVar XS("XS","cross section”,0.2,0.0, 0 5);

RooRealVar chl_norm("chl_norm",'"decayl norm" 4@00 );

RooRealVar ch2_norm("ch2 norm","decay?2 norm",6®@0 );

RooProduct chl ns("chl ns", "decayl ns", RooArgList(XS,chl_norm));
RooProduct ch2_ns('"ch2 ns","decay2 ns", RooArgList(XS,ch2 _norm));

RooRealVar chl_nb("chl nb","decayl nb",4000,0.,20000.); Relate Signal yields
RooRealVvar ch2_nb("ch2_nb","decay2 nb"”,7000,0.,20000.); with 3 comwown
RooAddPdf chl_model('"chl_model",'"decayl model”, cvoSS section value

RooArgList(chl_gaus,chl_linear),RooArgList(chl_ns,chl_nb));
RooAddPdf ch2_model('"ch2_model","decay2 model",

RooArgList(ch2_gaus,ch2_linear),RooArgList(ch2_ns,ch2_nb));
bl



EXAMPLE: SIMULTANEQUS FIT (I1)

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

partial example_07.cc

// now build the simultaneous model by adding two channels

RooSimultaneous model('"model","model", channel);

model.addPdf(chl_model, "decayl"); Build Simultaneous
model.addPdf(ch2_model, "decay2"); PDF wodel|

RooDataSet*x chl_data = chl_model.generate(mass);
RooDataSetx ch2_data = ch2_model.generate(mass);

RooDataSet data('"data","joint data",mass,Index(channel), combine two
Import("decayl",*chl_data),Import('decay2",*ch2_data)); data sets
model.fitTo(data,Minos(true));

TCanvas *cl = new TCanvas('cl1l",'"cl1",1200,400);
cl->Divide(3);

cl->cd(1); // sum of the two channels
RooPlot* framel = mass.frame();
data.plotOn(framel);
model.plotOn(framel,Projwbata(channel,data));
framel->Draw():

cl->cd(2); // decayl only

RooPlotx frame2 = mass.frame(); -
data.plotOn(frame2,Cut{"channel==1")); TVvojection w/ one ot the channels

model.plotOn(frame2,Slice(channel,"decayl"),ProjwWData(channel,data));
frame2->Draw();
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EXAMPLE: SIMULTANEQUS FIT (I1l)

» The results:

One common “XS”

out of two channels!
144 CALLS 1380 TOTAL

FCN=-84653.2 FROM MINOS STATUS=SUCCESSFUL

EDM=7.41671e-05 STRATEGY= 1 ERROR MATRIX ACCURATE

EXT PARAMETER PARABOLIC MINOS ERRORS

NO. NAME VALUE ERROR NEGATIVE POSITIVE
1 XS 1.85632e-01 6.92234e-03 -6.87829e-03 6.97093e-03
2 chl _mu 9.95607e-01 2.76611e-03 -2.77373e-03 2.76121e-03
3 chl_nb 4.03445e+03 6.75923e+01 -6.69704e+01 6.82316e+01
4 chl_sigma 5.05144e-02 2.43081e-03 -2.37884e-03 2.48783e-03
5 «chl_slope -3.94938e-01 8.49552e-03 -8.31853e-03 8.67485e-03
6 ch2_mu 1.00538e+00 5.70435e-03 -5.71690e-03 5.70313e-03
7 ch2_nb 7.10900e+03 9.34638e+01 -9.31037e+01 9.38420e+01
8 «ch2_sigma 9.80912e-02 5.63931e-03 -5.47038e-03 5.83389e-03
9 ch2_slope -1.97217e-01 1.30299e-02 -1.27859e-02 1.32827e-02

2)

o
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CONDITIONAL OBSERVABLE

» Sometimes if some of the PDF parameters are actually depending on
other observables.

» This requires a fit with conditional observable(s). A common
practice is the resolution, or the uncertainty, of your key observable.
For example, measurement of invariant mass or decay time of a
particle, accompany with the estimate of the mass or time resolution.

» In such a situation, the model of the key observable can in principle
taking the resolution parameter into account. e.g.

- An event with poor (better) resolution, a wider (narrower) PDF can
be introduced.

- It is generally nothing wrong to use an averaged resolution value,
but since you have a good estimate of it for each event, why not to
use it?
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EXAMPLE: FIT WITH RESOLUTION

0000000000000000000000000000000000000000000000000000000000000

» Here is an example to illustrate such a case,
using the convoluted exponential as 200
discussed before! -

example_08.cc |

0 1 2 3 4 5 6 7 8 9 10

// observables, decay time and its error decay time
RooRealVar t("t","decay time",0.,10.); —
RooRealvar terr("terr","decay time error",0.001,0.4);

// model for decay time error

RooRealVar terr_mu("terr mu","terr mu",0.2);

RooRealVar terr_sigma('"terr_sigma","terr sigma",0.02);

RooGaussian terr_model("terr_model","terr model",terr,terr_mu,terr_sigma);

// model for decay time (w/ time error in the resolution model)
RooRealVar tau('"tau","Lifetime",1.6,1.2,2.0);

RooGaussModel res("res","Resolution model",t,RooConst(0.),terr) <€
RooDecay t_model("t_model","t _model",t,tau, res,RooDecay::SingleSided); :

RooProdPdf model("model","full model",t_model, terr_model); every event
RooDataSetx data = model.generate(RooArgSet(t,terr), 10000); Khas 3 di$Sevent

model.fitTo(xdata,Minos(true),ConditionalObservables(terr)); vesolution functiown,

RooPlot xframe = t.frame(); “tevv” is a conditional observable wnot

data->plotOn(frame); - _
model.plotOn(frame); vedlly in the §it but 3as 3 pavametev,

frame—>Draw();
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REMINDER: BAYES THEOREM

» The form of Bayes theorem used in Bayesian parameter estimation
for a particular data set X°:

f p(X°[0)p ( )d9
- p(0]X°) is posterior probability density for 6.

- p(X?]0) is the likelihood function for N independent
observation of a variable X; and PDF f;(X;|0). The joint density
function can be expressed as

p(X|0) = HfZX|9

- p(0) is the prior probablllty den51ty for 6.

- The integration in the denominator is the normalization factor.
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PRIORS AND POSTERIORS

» The prior PDF represents your personal, subjective, degree of belief
about parameter 0 before you do any experiments.

- If you already have some experimental knowledge about 0 (e.g. from
a previous experiment), the posterior PDF from the previous
experiment can be introduced as the prior for the new one.

- But this implies that, somewhere in the beginning, there must be a
prior which contained no experimental evidence!

» The very first prior can be thought of as a kind of phase space, or
density of possible states of nature. But there is no law of nature that
tells us what this density is!

> On the other hand, the posterior density already represents all our
knowledge about 6, so there is no need to process this PDF any
further. But since we want a point estimate here, further operations

does require.
o1



BAYESIAN INFERENCE

» The posterior probability is proportional to the product of likelihood
function times the prior probability for the unknown parameters 0:

N
p(0]X°) oc | | fi(Xil6) - p(6)
i=1
> Based on the posterior probability one can evaluate then the average
and variance of 0, as well as the point with highest posterior density
(HPD)!
- Note the value which gives the highest posterior density and
the average don’t coincide in general!

» By looking for the highest posterior density point (maximizing the
posterior probability), it is just the maximum likelihood estimator
with a flat prior p(6): N

L(01X°) oc | | £i(Xi]6)

1=1
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BAYESIAN INFERENCE: POISSONIAN CASE

> Let’s calculate the posterior probability with Bayes theorem,
assuming a prior p(u) and the likelihood function p(n|u) is Poisson.

R > u”s'_“ ()
pnlp) = —— = plun) =

» If the prior is uniform, the normalization calculation is basically
straightforward; this gives the form of posterior probability as
Poisson distribution as well (here it means given observed n counts, the
probability for finding the value of u):

> ute H B O
/O pwdp =1 = plun) =—

» Here the value u with highest posterior density is n, by
maximizing p(u|n).
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BAYESIAN INFERENCE: POISSONIAN CASE (CONT,)

» Poisson PDF versus posterior probability?

n_,—u n_,—u
- L - pTe
p(nlp) = — p(pn) = —
. TL.
—_ - —~ 0.24r
™ - ™
| 0.22F . Il 0.22F .
= oz given u = 3, S oo givenn = 3,
@ o1 SO T 18 ndi
ooF finding n " finding u
0.14 0.14F
012} This is 012 This s posterior
F F probability of u,

- PDF of n! . >
00} 008 w/ uniform prior!
0.04 0'04:_

0.02 0.02F
0 R I S NN /T R I IO N el
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
n u

Remark: the right plot is NOT just a scanning over p with given n with original

Poisson distribution (which is not a PDF in that case, but just a likelihood)!




BAYESIAN POINT ESTIMATES

» One can see that the method discussed above gives the expected
result for the Bayesian point estimate j

= with n events observed, u = n.
» However, there were two suspicious things being carried out:

- A flat prior was introduced (uniformly distributed between zero
and positive infinity!). ie. our prior belief of the true value of u,
integrated between any two finite numbers is zero. That is not
really physical.

the PDE which is not invariant under change of variables. e.g.
if we want to estimate u*, we will not obtain fi°.

Any alternative choices?

55



ANY ALTERNATIVES?

> Another possible Bayesian estimate of p would be to use the expectation
E (u) with the posterior density (average of u). With a uniform prior on p,
when n events are observed, this gives E(u) =n+1 in fact!

E(y) — / T p(uln)dp =n £l V() =n+1

» Since E(n)=pu, one might be happier to see E(u)=n also!

> In fact, one can get E(u)=n if the prior PDF P(u)=1/u is chosen. But
the 1/u prior also has other advantages:

- It could represent somebody’s prior belief, since it goes to zero at
p=-cc, and it produces a uniform density on a log scale (good).
However, it is still not a proper density since it cannot be normalized
in the range (0,).

- It is one of the Jeffreys priors, proposed by physicist Harold Jeffreys
as being “objective” and it is scale invariant.
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CHOICE OF PRIOR

» Unfortunately the 1/u prior also has some other problems:
- If one observes zero event (n=0), P(u|0) is a delta-function at u=0!
- When there is background contributing to the Poisson process, the
point estimate breaks down. Have to introduce a different one!
» Nevertheless, as a summary of the common choice of Bayesian estimate:

The choice of priors (in the case with Poisson estimation):
- Uniform - gives some reasonable estimates, but has issues.

- Jeffreys 1/u — Better in theory, but not in practice due to other
problems!

The choice of point estimators:

- Take the maximum posterior density gives reasonable results, but
not invariant under change of variable;

- Take the expectation E(u) is possible, but not invariant either.

- Median of the posterior density is invariant, but is not used much.
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COMMENT: JEFFREYS PRIOR

> The Jeffreys prior is a non-informative (objective) prior distribution for
a parameter space; it is proportional to the square root of the
determinant of the Fisher information matrix I(6):

p(0) o< \/detZ(9)  I(0)y; =F K aii In L) (8%1]@ L)]

> It has the key feature that it is invariant under reparameterization.
Some common choices:

Poissonian 9 1 Gaussian 9 1
mean p(0) <1/ mean p(0) o

Poissonian mean Gaussian standard
w/ background b p(0) o< 1/v/ i +b YT p(0) < 1/o

Binomial Obvious generalization to multi-
p(0) o< 1/+/e(1 — ) 5

parameter parameter models is problematic!
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BAYESIAN ESTIMATION SUMMARY

» Remember: Bayesian probability means the probability is defined as
personal, subjective, degree of belief.

> Bayesian point estimation is a coherent method which provides a
reasonable way to estimate parameters. But it involves two arbitrary
choices (issues):

- Which prior PDF to use, and how sensitive is the result to the choice?
- How to connect the posterior probability to the point estimate?

» Well, one can increase the observations, the prior probability is
significantly modified by data — then the final posterior probability
(tends toward a Gaussian in most of the cases) will depend much less from the
initial prior probability.

- But under such a condition, using frequentist or Bayesian approaches
does not make much difference.
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COMMENT: BAYES THEOREM AS “LEARNING”

» Recall the typical Bayes theorem formula:
p(B|A)p(A)
p(B)
- Before the observation of data B, our degree of belief of A is p(A),
as the prior probability.

p(A|B) =

- After observing data B, our degree of belief changes into p(A|B), as
the posterior probability.

- Probability can be expressed also as a property of non-random
variables, e.g. associated with unknown parameter or unknown

events;

- As an approach to extend knowledge with subsequent observations,
e.g. combine experiment/observations = just multiply probabilities.
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COMMENT: REPEATED USE OF BAYES THEOREM

> Bayes theorem can be applied sequentially for repeated data
observations: posterior < learning from experiments.

observation 1 observation 2 observation 3
Conditioned Conditioned Conditioned
Prior : : :
posterior 1 posterior 2 posterior 3
P0=Pri0r P; o Py X L; Py o Pgp X L; XLy P3oxPgpXL; XLy XLs

...accumulating more and more observations = multiply probabilities

» The observation modifies the prior knowledge of the unknown
parameters as if L is a probability distribution function.

» Note applying Bayes theorem directly from prior to multiple
observables leads to the same result:

Piyoy3 =1y X Liyoy3 =Py X Ly X Ly X L3 = P3
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NON-UNIFORM PRIOR AND MAXIMUM LIKELIHOOD

» As discussed in the previous slide, the ML estimator is a special case
of Bayes theorem with flat prior.

» Similarly and in practice, constrained ML estimator can be seen as
the special case of Bayes theorem with non-uniform prior in fact.

» Recall the constraint can be incorporated by multiplying the
constrained PDF to the original likelihood. i.e.

L' = L(X|0) x p(\ Hfz (X;10) - p(N) s subset of 6

» You may find that it matches how we treat the prior PDF in Bayes
theorem:

p(01X°) o [T £:(X:16) - p(0)

1=1
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TOOLS FOR COMPUTING POSTERIOR PDF

» The usual problem: parameters with priors needed to
be integrated out = multidimensional integration!

» One can perform analytical integration -

- But it is only feasible in very few cases | [EICESEICHEVEEIEICIEIR,
5 available

> Or one can use numerical integration ...

- It would be (very) CPU intensive

» Integration with Markov Chain Monte Carlo

- Sampling parameter space efficiently RooStats::MCMCCalculator
using random walks, heading to the regions available

of higher probability;

- “Metropolis” algorithm to do sampling
according to a PDF.
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MARKOV CHAIN MONTE CARLQ

» MCMC methods are primarily used for calculating numerical
approximations of multi-dimensional integrals.

> In Bayesian statistics, it has been a key step in making it possible to
compute large hierarchical models that require integrations over
hundreds/thousands of parameters.
» Typical algorithm:
D) Starting from a random point X; in the parameter space;
2) Generating a proposal point X, in the vicinity of Xj;

3 If p(X,) > p(X;) accept it as the next point X;;1 = X, else, accept
the new point only with a probability p = p(X,) / p(Xi);

4) Repeating the procedures from 2)

» Convergence criteria and step size needed to be defined.
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COMMENT: BAYESIAN VERSUS FREQUENTIST

» The frequentist approach was largely favored by scientists, due to
its “experimental-driven definitions”.

» However, recently Bayesian estimates are getting more popular
and provide simpler mathematical methods to perform
complicated estimates.

> Also Bayesian estimators properties /
can be studied with a frequentist approach ,,.,

using the toy Monte Carlos, and it is =
4l
..‘V

= F
1_

UTfit

ummeri16

/
feasible with today’s computers. ‘ ‘;

> Also preferred by some TH community, -5
e.g. UT Fit, with Bayesian determination
of the CKM unitarity triangle.

=1




COMMENT: BAYESIAN VERSUS FREQUENTIST (CONT.)

» Bayesian and frequentist approaches have complementary
roles in the scientific process in fact:

W Observation of
] new phenomenon

Confirmation is needed! Interpretation

repeat the experiment and/or What Is the probability that
find other evidences the interpretation Is right?

Bayesian probabilistic
interpretation of the new
phenomenon

...then it runs into frequentist domain!

So both approaches are mandatory!
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SUMMARY

000000000000000000000000000000000000000000000000000000000000000

» In this lecture we went though the theory
(mathematics) behind the point
estimations.

» Hopefully this gives you a little bit more
deeper idea about the maximum
likelihood estimator, least-square
estimator, and Bayesian inference.

» For the next lecture, we are going to
discuss another estimation: how to
extract the intervals out of your
distributions.
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