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HYPOTHESIS TEST: OVERVIEW
➤ The key idea: compare two hypotheses to see which one better 

describes the observed data; or what is the best way to separate the 
events into two classes, which originating from each of the two 
hypotheses. One shall distinguish the two cases, for a given parameter of 
interests: 

- If nothing is known a priori, the method of  parameter estimation 
introduced in the earlier lecture should be adopted; 

- If a (theoretical) prediction exists, it is more appropriate to formulae 
the problem as a test. 

➤ The two hypotheses in discussion are classically labeled as: 

- H0 : the null hypothesis (e.g. a sample contains only background) 

- H1 : the alternative hypothesis (e.g. a sample contains both background 
and signal)
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HYPOTHESES: SIMPLE VERSUS COMPOSITE

➤ When the hypotheses H0 and H1 are completely set/specified (ie. with no 
free parameters), they are the simple hypotheses. 

➤ Hypothesis testing for simple hypotheses has been well understood, the 
method works for both large and small samples. 
 

➤ If the hypothesis still contains one or more free parameters, then it 
becomes a composite hypothesis. Generally there is only an asymptotic 
theory for the testing.  

- You can image that the composite hypotheses are more common in a 
real problems. One can obtain the exact answers for small samples 
using Monte Carlo methods.
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MORE TERMINOLOGY…

➤ A variable computed from our sample, and provides the discriminating 
power between the two hypotheses H0 and H1, as a “summary” of the 
information available in the sample. 
 

➤ The probability to reject H1 if H0 is assumed to be true. 
➤ Error of the first kind. 
➤ α = 1 – misidentification probability 
 

➤ The probability to reject H0 if H1 is assumed to be true. 
➤ Error of the second kind. 
➤ 1 – β = power of the test = selection efficiency
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misidentification probability (β)



MORE TERMINOLOGY…(CONT.)

➤ If W is the space of all possible data, one can find a Critical Region 
w ∈ W (in which we reject H0) which gives the measure: 

- P(data X ∈ w|H0) = α, chosen to be small; 

- P(data X ∈ (W−w)|H1) = β, is made as small as possible.
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USEFULNESS OF A TEST
➤ The “usefulness of a test” is the ability to discriminate against 

the alternative hypothesis H1. The measure of this factor is the 
power of the test, defined as the probability 1−β, where the X 
falling into the critical region if H1 is true:  

➤ While β is the probability that X will fall in the acceptance region 
for H0 if H1 is true:  

➤ Determination of a multidimensional critical region may be 
difficult in practice, instead, a single test statistic t(X) variable 
can be introduced. In this case the critical region is redefined 
along t instead of X. 
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Hypothesis Testing Frequentist - Simple Hypotheses

Example: Separation of two classes of events
P (M)

0

0

M⇡0

M⇡0
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↵

Mc

Mc

M1

M1

M

M

P (M |H0)

P (M |H1)

Resolution functions for the missing mass M under the hypotheses H0 and H1, with

critical region M > Mc .
F. James (CERN) Statistics for Physicists, 4: Hypothesis Testing May 2011, Stockholm 6 / 27

EVENTS SEPARATION IN 2 CLASSES
➤ Distinguish elastic proton 

scattering events 
 
 
from inelastic scattering events 
 
 
in an experimental setup which 
measures the proton 
momentum, but the π0 cannot 
be detected. If one choose the 
missing mass distribution as 
the test statistic:
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pp→pp (hypothesis under test, H0)

pp→ppπ0 (alternative hypothesis, H1)

Missing mass M under the 
hypotheses H0 and H1, with 
the critical region M > Mc.



THE NEYMAN-PEARSON TEST
➤ For a hypothesis test for H0 against H1 with a given 

significance α, the most powerful test is reached with the best 
critical region w with the smallest value of β. 

➤ Suppose a random variable X = (X1, X2, . . . , XN) has PDF 
f(X|H0) and f(X|H1). Based on the definitions of α and the 
test power 1−β, one can express
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THE NEYMAN-PEARSON TEST (CONT.)
➤ Thus the best critical region w should be consistent with the points 

satisfying the following condition: 
 

➤ The procedure gives the following clear criteria: 

- if R(X, H0, H1) > Cα, choose H1 

- if R(X, H0, H1) ≤ Cα, choose H0 

➤ This is exactly the Neyman–Pearson test. The test statistic R is just 
the ratio of the likelihoods for the two hypotheses, and this ratio 
must be “calculable” at all points of the observable space.  

➤ Thus the two hypotheses H0 and H1 must be completely specified as 
simple hypotheses, and then this method will give the best test.

9

R(X,H0, H1) ⌘
f(X|H1)

f(X|H0)
� C↵



LIKELIHOOD RATIO TEST
➤ The likelihood ratio test is an extension of the Neyman-Pearson test 

to the case of composite hypotheses, although its properties are only 
known asymptotically. 

➤ For the observations X with PDF f(X|θ), where θ contains the full set 
of parameters θ=(θ1, θ2,…). The likelihood function can be expressed 
as  

➤ Now the null as well as the alternative hypotheses can be defined by 
the total space Θ as well as its subspace Ω for any test of parametric 
hypotheses: 
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L(X|✓) =
NY

i=1

f(Xi|✓)

H0 : θ ∈ Ω
H1 : θ ∈ Θ – Ω



LIKELIHOOD RATIO TEST (CONT.)
➤ Now one can define the maximum likelihood ratio a test statistic for H0: 
 

➤ If H0 and H1 are simple hypotheses, λ would reduce to the Neyman-
Pearson test statistic as given earlier.  

➤ For composite hypotheses, λ is always a function of the sufficient statistic 
for the problem with a large set of observations (asymptotic behavior). 

➤ Furthermore, if H0 imposes k constraints on the total parameters, then 
the value of −2lnλ is just distributed as a χ2 distribution of k degree of 
freedom under H0. 
- The confidence level α can be extracted from a table of χ2! 
- But this is only true asymptotically, the only way to know how good 

the approximation is to do a Monte Carlo study.
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LIKELIHOOD RATIO TEST EXAMPLE
➤ Suppose you are performing a measurement of an amplitude X, where it is allowed 

to be any complex number. There are three existing different theories which 
predict the following for X: 
- Theory A predicts X=0; 
- Theory B predicts X is real: Im(X)=0; 

- Theory C predicts X is purely imaginary and non-zero: Re(X)=0, but 
Im(X)≠0 

➤ If the value of X is interesting only as it could distinguish between the hypotheses 
A, B, C or the general case. In this hypothesis testing: 
- Hypothesis A is a simple hypothesis; 
- Hypothesis B is composite, however it includes hypothesis A as a special 

case; 
- Hypothesis C is also composite, and separates from A and B. 

- The alternative to all these hypotheses is that Re(X) and Im(X) are both 
non-zero.
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Hypothesis Testing Frequentist - Composite Hypotheses

Likelihood Ratio Test - Example
The contours of the log-likelihood function ln L(X ) near its maximum.
X = d is the point where ln L is maximal.
X = b is the maximum of ln L when Im(X ) = 0.
X = c is the maximum of ln L when Re(X ) = 0.

lnL = lnL(✓̂)� 1/2

lnL = lnL(✓̂)� 2

Re(X)

Im(X)

d

b

c

0

F. James (CERN) Statistics for Physicists, 4: Hypothesis Testing May 2011, Stockholm 24 / 27

LIKELIHOOD RATIO TEST EXAMPLE (II)
➤ As a test of theory A:  

the maximum likelihood ratio 
for hypothesis A versus the 
general case is  
 

➤ If the hypothesis A is true, the 
−2lnλa is distributed 
asymptotically as a χ2 
distribution of 2 degrees of 
freedom, since both Re(X) and 
Im(X) are constrained to be zero 
in hypothesis A.
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X = d is the point where L is maximal; 
X = b is the maximum of L when Im(X)=0; 
X = c is the maximum of L when Re(X)=0.

c●b
●
d
●

�a =
L(X = 0)

L(X = d)



Hypothesis Testing Frequentist - Composite Hypotheses

Likelihood Ratio Test - Example
The contours of the log-likelihood function ln L(X ) near its maximum.
X = d is the point where ln L is maximal.
X = b is the maximum of ln L when Im(X ) = 0.
X = c is the maximum of ln L when Re(X ) = 0.

lnL = lnL(✓̂)� 1/2

lnL = lnL(✓̂)� 2

Re(X)

Im(X)

d

b

c

0

F. James (CERN) Statistics for Physicists, 4: Hypothesis Testing May 2011, Stockholm 24 / 27

LIKELIHOOD RATIO TEST EXAMPLE (III)
➤ As a test of theory B:  

the maximum likelihood ratio for 
hypothesis B versus the general 
case is  
 

➤ If the hypothesis B is true, the 
−2lnλb is distributed 
asymptotically as a χ2 distribution 
of 1 degree of freedom, since 
only Im(X) are constrained to be 
zero in hypothesis B. 

➤ As a test of theory C:  
just replace b by c as above!
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X = d is the point where L is maximal; 
X = b is the maximum of L when Im(X)=0; 
X = c is the maximum of L when Re(X)=0.
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●
d
●
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BENCHMARK OF DISCOVERY: P-VALUE
➤ From frequentist definition, p-value (of N observed events) is the 

probability to observe a result at least as extreme as the observed test 
statistic (e.g. at least ≥N events) if the null hypothesis H0 is true. 

- Probability that a background (over-)fluctuation gives at least the 
observed number of events. 

- NOT the probability for which H0 is true! 

➤ If H0 is true, the distribution of the  
p-value itself is uniform if the  
distribution is continuous, or  
approximately uniform in case of  
discrete distributions.
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P(n≥8)=0.087

b=4.5 
N=8



P-VALUE AND SIGNIFICANCE
➤ The p-value measures the observed incompatibility with the 

background-only hypothesis.  

➤ However it is often converted into # of standard deviations 
corresponding to a Gaussian distribution ⇒ “nσ” significance.
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THE FIVE SIGMA RULE
➤ In your search for a signal, for example, a bump on top of a smooth 

background, once you observed an effect of  

- >3σ, or p-value<0.00135, a “hint” of the proposed signal can be 
claimed.  

- >4σ, or p-value<3.17×10–5, an “evidence” can be claimed. 

- >5σ, or p-value<2.87×10–7, it’s time for “discovery/observation”! 

➤ This is a more-or-less standard criterion commonly adopted in modern 
HEP experiments.  

- Quote from Rosenfeld’s early review of PDG: “…we are now generating 
at least 100,000 potential bumps per year, and should expect several 4-sigma 
and hundreds of 3-sigma fluctuations. What are the implications? To the 
theoretician or phenomenologist the moral is simple; wait for nearly 5-sigma 
effects.”
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APPROXIMATE FORMULAE
➤ Consider a Poisson counting experiment, consists of an observed 

number n of events, modeled as a Poisson distribution with a mean 
of ηs+b, where s and b are the expected numbers of signal and 
background. 

➤ In the large mean limit, the Poisson variable n can be approximated 
as a Gaussian with mean ηs+b and variance σ2=ηs+b. 

➤ The p-value (and the corresponding significance) from η=0 hypothesis is 
the probability to find n greater than or equal to the value observed,  
 

➤ The median of n assuming η=1 is s+b, and therefore the median 
discovery significance is
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APPROXIMATE FORMULAE (II)
➤ A better approximation for the Poisson counting experiment, can be 

obtained by testing η=0 using the likelihood ratio test: 

➤ The best value η ̂is given by (n–b)/s after maximizing the likelihood 
function. Here both s and b are assumed to be known and no nuisance 
parameters. The relevant signal models correspond to positive η, one 
may test the η=0 hypothesis using the test statistic Q=−2lnλ. In the 
large-sample limit, the discovery significance can be expressed as  

➤ Again the median of n assuming η=1 is s+b, and therefore the 
median discovery significance is
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APPROXIMATE FORMULAE (III)
➤ In some analyses, the goal may not be to establish discovery of a signal 

process but rather to measure the signal rate as accurately as possible. 

➤ If we consider again the Poisson counting experiment described by the 
likelihood function given in the previous slide, the best value  
η=̂(n–b)/s has a variance (assuming η=1): 
 

➤ Take the inverted standard deviation of η:̂  
 
 
One may therefore us this as a figure of merit to be maximized in 
order to obtain the best measurement accuracy of a rate parameter. 

➤ Now you know why there are 3 commonly used definitions of figure of 
merit!
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DISCOVER OR EXCLUDE A SIGNAL HYPOTHESIS

➤ Assuming a given value of signal strength η>1, a 
corresponding p-value can be computed. 

➤ In this case the p-value also measures the probability of a 
signal (under)fluctuation for n≤nobs. 

➤ The exclusion of a signal hypothesis usually has relaxed 
requirements comparing to discovery of signal: 

- p < 0.05 (95% confidence level) ⇔ Z=1.64  

- p < 0.10 (90% confidence level) ⇔ Z=1.28
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Discover a new signal need a more stringent 
significance than excluding it!



RECALL: PROBLEMS IN UPPER LIMIT ESTIMATION

➤ Remember we have commented some of the issues of using 
Feldman-Cousins unified approach before the end of last 
lecture: 

- In some cases, a statistical (under-)fluctuation of the 
background may lead to the exclusion of zero signal. 

- In some other cases, when adding the channels with low 
signal sensitivity, may produce upper limits that are worse 
than without adding them.  

➤ So let’s introduce the modified frequentist method: the CLs 
method which solves the problems mentioned above in the 
following slides!
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THE MODIFIED FREQUENTIST METHOD: CLS (LEP VER.)
➤ Method was first developed for Higgs limit estimation at LEP-II, since 

there were multiple analysis channels from multiple experiments. 

➤ Using the likelihood ratio as the test statistic Q = L(s+b)/L(b). 

➤ The confidence levels estimator CLS is different from the Feldman-
Cousins approach: 
 
 

- It’s more conservative in general –– gives over-coverage comparing to 
the classical limit based on CLs+b 

- Limit for counting with Poissonian data is identical to Bayesian 
method. 

- No problem when adding channels with low discrimination power.
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CLs+b

CLb
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CLS METHOD IN PRACTICE
➤ In practice, the actual estimators CLs+b, CLb, and the 

corresponding CLs can be computed using toy Monte Carlo. 

➤ Sampling test statistic distributions for both null hypothesis  
(b-only) and alternative hypothesis (s+b) configurations.
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double CL_scan(double target_ns = 5., int ntoys = 1000, bool display = false) 
{ 
    const int nobs = 8; const double nb = 4.5; 
     
    double L0 = TMath::Poisson(nobs,nb); 
    double L1 = TMath::Poisson(nobs,nb+target_ns); 
    double Q_obs = -2.*(log(L1)-log(L0)); // observed test statistic 
     
    double CL[2] = {0.,0.}; 
    vector<double> stat[2]; 
    for (int hypo=0; hypo<=1; hypo++) { 
        for (int idx=0; idx<ntoys; idx++) { 
            int n = 0; 
            if (hypo==0) n = rnd.Poisson(nb); // toy sampling b-only 
            if (hypo==1) n = rnd.Poisson(nb+target_ns); // toy sampling s+b 
             
            double L0 = TMath::Poisson(n,nb); 
            double L1 = TMath::Poisson(n,nb+target_ns); 
            double Q = -2.*(log(L1)-log(L0)); // sampled test statistic 
            stat[hypo].push_back(Q); 
             
            if (Q>=Q_obs) CL[hypo] += 1.; 
        } 
        CL[hypo] /= (double)ntoys; 
    } 
    double CLs = CL[1]/CL[0];

EXAMPLE: POISSON COUNTING WITH KNOWN BACKGROUND
➤ Suppose there is a Poisson process with a known background 

of 4.5 events, and the experiment observed 8 events.

25partial example_01.cc

Calculate�the�value� 
of�test�statistic�for� 
nobs�=�8

Calculate�the�test�statistic� 
distribution�from�toy�CLs+b�and�CLb



Target ns = 7.5,  
CLs+b = 0.156, CLb = 0.958, CLs = 0.163

EXAMPLE: POISSON COUNTING WITH KNOWN BACKGROUND (CONT.)
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  if (display) { 
        TH1D* h_stat0 = new TH1D("h_stat0","",25,-70.,30.); 
        TH1D* h_stat1 = new TH1D("h_stat1","",25,-70.,30.); 
        for (int idx=0; idx<ntoys; idx++) { 
            h_stat0->Fill(stat[0][idx]); 
            h_stat1->Fill(stat[1][idx]); 
        } 
         
        TCanvas *c1 = new TCanvas("c1","",600,600); 
        c1->SetLogy(); 
        h_stat1->Draw(); 
        h_stat0->Draw("same"); 
        TLine l1; 
        l1.DrawLine(Q_obs,0.,Q_obs,h_stat1->GetMaximum()); 
  }     
  printf("Target ns=%.1f, CLs+b=%.3f, CLb=%.3f, CLs=%.3f\n”, 
      target_ns,CL[1],CL[0],CLs); 
     
  return CLs; 
} 
   
void example_01() 
{  CL_scan(7.5,40000,true); }

partial example_01.cc
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BUT I WANT A 90% AND/OR 95% C.L. LIMIT..
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ns=3 
CLs=0.695

ns=5 
CLs=0.409

ns=4 
CLs=0.548

ns=6 
CLs=0.294

➤ For a given signal strength, by applying CLs rule the upper limit for the 
corresponding confidence level (=1–CLs) can be computed. In order to 
get the upper limit at desired C.L., one has to scan over the signal 
strength, e.g.

ns=7 
CLs=0.200

ns=9 
CLs=0.084

ns=8 
CLs=0.131

ns=10 
CLs=0.052



void example_01a() 
{ 
    vector<double> vec_x, vec_obs; 
    double target_ns = 0.; 
    while (target_ns<=14.) { 
        double CLs = CL_scan(target_ns,40000); 
         
        vec_x.push_back(target_ns); 
        vec_obs.push_back(CLs); 
        target_ns += 0.25; 
    } 
     
    TGraph *gr_obs = new  
        TGraph(vec_x.size(),vec_x.data(),vec_obs.data()); 
    
    TCanvas *c1 = new TCanvas("c1","",600,600); 
    c1->SetGrid(); 
    c1->SetLogy(); 
     
    TH2D *frame = new TH2D("frame","",10,0.,14.,10,0.01,1.2); 
    frame->Draw(""); 
     
    gr_obs->Draw("same"); 
     
    TLine lin; 
    lin.DrawLine(0.,0.05,14.,0.05); 
    lin.DrawLine(0.,0.10,14.,0.10); 
}

EXAMPLE: SCANNING OVER SIGNAL STRENGTH
➤ Let’s perform such an easy scan and find the proper relation between 

CLs and signal strength:

28

partial example_01a.cc

0 2 4 6 8 10 12 14

Signal Yield

2−10

1−10

1

 =
 1

-C
L

s
C

L

~8.5 event is the  
upper limit @ 90% C.L. 

~10 event is the  
upper limit @ 95% C.L.



THE FEATURES OF CLS METHOD
➤ CLs+b: the probability to obtain a 

result which is less compatible with 
the signal than the observed result 
in the s+b hypothesis; 

➤ CLb: probability to obtain a result 
less compatible with the signal than 
the observed one in the b-only 
hypothesis; 

➤ If the two distributions are very well 
separated, CLb~1 and CLs~CLs+b 

➤ If the two distributions are very 
close each other, CLb is reduced and 
preventing CLs to drop too quick.
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HOW ABOUT THE “EXPECTED LIMIT”?

➤ In the search of unknown signals, it is rather common to 
provide the “expected limit” for null hypothesis as well as its 
uncertainty bands.  

➤ The trick is to replace the observed test statistic with the 
median of the sampled test statistic from null hypothesis.
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EXAMPLE: NOW WE HAVE THE EXPECTED LIMIT
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void CL_scan(double *CLs, double target_ns = 5.,  
             int ntoys = 1000, bool display = false) 
{ 
    const int nobs = 8; 
    const double nb = 4.5; 
    double Q_thres[4] = {0.,0.,0.,0.}; 
     
    double L0 = TMath::Poisson(nobs,nb); 
    double L1 = TMath::Poisson(nobs,nb+target_ns); 
    Q_thres[0] = -2.*(log(L1)-log(L0)); // observed test statistic 
     
    vector<double> stat[2]; 
. . . . . . 
     
    sort(stat[0].begin(),stat[0].end()); 
    Q_thres[1] = stat[0][(int)(0.159*ntoys)]; // null expected 16% (-1s) 
    Q_thres[2] = stat[0][(int)(0.500*ntoys)]; // null expected 50% (median) 
    Q_thres[3] = stat[0][(int)(0.841*ntoys)]; // null expected 84% (+1s) 
     
    for (int type=0; type<4; type++) { 
        double CL[2] = {0.,0.}; 
        for (int hypo=0; hypo<=1; hypo++) { 
            for (int idx=0; idx<ntoys; idx++) 
                if (stat[hypo][idx]>=Q_thres[type]) CL[hypo] += 1.; 
            CL[hypo] /= (double)ntoys; 
        } 
        CLs[type] = CL[1]/CL[0]; 
    }

partial example_01b.cc

Now�we�need�to�keep� 
multiple�thresholds�on  
the�test�statistic

Use�the�resulting��
sampling�of�b-only�toy�
to�calculate�the�thresholds

Get�the�CLs�values�for�4�thresholds



EXAMPLE: NOW WE HAVE THE EXPECTED LIMIT (CONT.)

32

void example_01b() 
{ 
    vector<double> vec_x, vec_obs, vec_exp[3]; 
    double target_ns = 0.; 
    while (target_ns<=14.) { 
        double CLs[4]; 
        CL_scan(CLs,target_ns,40000); 
         
        vec_x.push_back(target_ns); 
        vec_obs.push_back(CLs[0]); 
        vec_exp[0].push_back(CLs[1]); 
        vec_exp[1].push_back(CLs[2]); 
        vec_exp[2].push_back(CLs[3]); 
        target_ns += 0.25; 
    } 
     
    TGraph *gr_obs = new  
        TGraph(vec_x.size(),vec_x.data(),vec_obs.data()); 
    TGraph *gr_exp = new  
        TGraph(vec_x.size(),vec_x.data(),vec_exp[1].data()); 
    TGraph *gr_experr = new TGraph(vec_x.size()*2); 
    for (int i=0; i<vec_x.size(); i++) { 
        gr_experr->SetPoint(i,vec_x[i],vec_exp[2][i]); 
        gr_experr->SetPoint(vec_x.size()*2-1-i,vec_x[i],vec_exp[0][i]); 
    } 
. . . . . . 
    gr_experr->Draw("fsame"); 
    gr_exp->Draw("same"); 
    gr_obs->Draw(“same");

partial example_01b.cc
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NUISANCE PARAMETERS TREATMENT
➤ Whenever we are doing the experiments, nuisance parameters  (those 

uninterested parameters, systematics, etc) are something cannot be avoid. 
➤ Two main approaches exist: 

- Add the nuisance parameters to your likelihood model 
‣ The model might become complicated. 
‣ Easier to incorporate in a fit but not in the upper limits 

- Bayesian way ⇒ “Integrate it out”
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P (✓|X) =

Z
P (✓,�|X)d� =

R
L(X|✓,�)⇡(✓,�)d�R

L(X|✓0,�)⇡(✓0,�)d✓0d�
θ: Parameter of interests 
λ: nuisance parameters 
π(θ,λ): prior PDF 

Obtain P(θ|X) as a “marginal 
PDF” by integrate out λ.



THE FREQUENTIST WAY
➤ One can introduce a complementary dataset to constrain the 

nuisance parameters (e.g. calibration data point, background estimates 
from control sample, etc.). 

➤ Extend the likelihood function to formulate the statistical problem 
in terms of both the main data sample (X) and control sample (Y): 
 

➤ The “control sample” can be just a randomized constrained PDF 
mean if it was introduced as a constraint in the original data fit. 

➤ This method makes the likelihood function more complex, will 
take more time to minimize at Minuit (usually CPU intensive!).  

➤ Alternative solution ⇒ the “hybrid” method.
34

L(X,Y |✓,�) = L(X|✓,�)L(Y |�)



THE COUSINS-HIGHLAND HYBRID APPROACH
➤ Unfortunately there is no fully solid general approach to incorporate 

nuisance parameters in a frequentist approach. 

➤ The hybrid approach was proposed by Cousins & Highland [Ref. NIM 
A320 (1992) 331-335] 

➤ Like the Bayesian method ⇒ integrate (“marginalize”) the likelihood 
function over the nuisance parameters. 
 

➤ Take the Bayesian way of integration over PDF, then use the likelihood in a 
frequentist way: 
- Bayesian-frequentist “hybrid” approach. 
- Not guaranteed to provide exact frequentist  

coverage. 
- Gives very similar results to Bayesian limit with a uniform prior.
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RooStats::HybridCalculator 
available

Lhybrid(X|✓, e�) =
Z

L(X|✓,�)f(e�;�)d�



PROFILE LIKELIHOOD APPROACH
➤ As we already discussed in the previous 

lecture, the profile likelihood is the 
way to reduce the parameters and only 
focus on the main one. 

➤ Here a different test statistic is 
introduced (instead of classical  
L(s+b)/L(b)): 
 

➤ The likelihood function is “broadened/
smeared” by nuisance parameters. 

➤ Distribution of –2lnR tends to a χ2 
distribution with 1 degree of freedom 
if there is only one parameter of interest.
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R =
L(✓, ˆ̂�)

L(✓̂, �̂) ↜fit�θ�and�λ
↜fix�θ,�fit�λ

1–CLb CLs+b

–2lnR

# of toy

 b-only
s+b

0

RooStats:: 
ProfileLikelihoodCalculator 

available

Resulting different test  
statistic distributions 
(basically the same as the profile 
likelihood treatment in F&C study)



THE “LHC” VERSION OF PROFILE LIKELIHOOD CLS

➤ The standard agreement between CMS and ALTAS (for the 
Higgs combination, of course).  

➤ It use profile likelihood as test statistics in CLs, but with an 
upper bound of target signal strength in the minimization. 
 

➤ This constraint ensures that upward fluctuations of the data 
are not considered as evidence against the signal hypothesis 
(pure 1-side limit). 

➤ The agreed nuisance treatment is the Frequentist way 
instead of the hybrid method.

37

R =
L(✓, ˆ̂�)

L(✓̂, �̂) ↜fit�θ�and�λ
↜fix�θ,�fit�λ

0  ✓̂  ✓
��↜�fitted�θ̂�cannot�be�larger�  
� then�the�target�strength�θ



FROM LEP, TEVATRON, TO LHC
➤ Let’s summarize the methods commonly used in different experiments. 

➤ Now you might be aware of these different statistical interpretations 
when you are reading the papers from them! 
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Test statistic Profiled? Nuisance treatment

LEP No Hybrid method

Tevatron Yes Hybrid method

LHC Yes w/ upper cap 
(0≤θ≤̂θ) Frequentist

�2 ln
L(✓, e�)
L(0, e�)

�2 ln
L(✓, �̂✓)

L(0, �̂0)

�2 ln
L(✓, �̂✓)

L(✓̂, �̂)

e� : nominal nuisance

�̂✓ : minimized nuisance at ✓

�̂0 : minimized nuisance at ✓ = 0

✓̂, �̂ : minimized POI and nuisance



STEP-BY-STEP LHC-STYLE CLS LIMIT CALCULATION
➤ Before ending of this lecture, let’s perform a step-by-step calculation of the 

“LHC-style” CLs limit.  
➤ Adopt a slightly different model from the previous F&C study example:  

(note: example_splusb.root is available on the  
 lecture web as well!):
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  TFile *fin = new TFile("example_splusb.root"); 
  TNtupleD* nt = (TNtupleD *)fin->Get("nt"); 
     
  RooRealVar mass("mass","mass obs",0.,2.); 
     
. . . . . . 
     
  RooRealVar ns("ns","ns",10,0.,1000.); 
  RooRealVar nb("nb","nb",90,0.,1000.); 
  RooAddPdf model("model","mass PDF",RooArgList(gaus,linear),RooArgList(ns,nb)); 
     
  RooRealVar slope_mu("slope_mu","slope mean",-0.3); 
  RooRealVar slope_sigma("slope_sigma","slope sigma",0.03); 
  RooGaussian cons("cons","constrained PDF",slope,slope_mu,slope_sigma); 
     
  RooDataSet data("data","data",nt,RooArgSet(mass)); 
     
  model.fitTo(data,ExternalConstraints(cons));

example_02.cc
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TOY MC WITH FULL FREQUENTIST APPROACH
➤ In the toy Monte Carlo generation we need to take into account the 

constrained parameter (here it is the slope of background shape). 

➤ As discussed in the earlier slide, the likelihood function has to be 
extended to include both the main sample and complementary 
sample (here it is exactly the constrained term!): 
 

➤ Note we already have the joint likelihood function by adding the 
ExternalConstraints option in RooFit. So all we need to do is to have 
the proper complementary sample generated together with the main 
sample. 

➤ In practice this is just randomizing the constrained mean (Sμ) at 
each toy fit, since it is the complementary sample!
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L(M |ns, nb, S) = L(M |ns, nb, S)L(S;Sµ, S�) ↜constrained�PDF



TOY MC WITH FULL FREQUENTIST APPROACH (II)
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void freq_toy(double target_ns = 10., int ntoys = 100) 
{ 
  RooWorkspace *ws = new RooWorkspace("wspace"); 
  buildModel(ws); 
   
  ws->var("ns")->setVal(target_ns); 
  ws->var("ns")->setConstant(true); 
  ws->pdf(“model")->fitTo(*ws->data("data"),ExternalConstraints(*ws->pdf("cons"))); 
     
  TH1D *pull_ns = new TH1D("pull_ns","",60.,-6.,6.); 
  TH1D *pull_slope = new TH1D("pull_slope","",60.,-6.,6.);         
   
  for (int idx=0; idx<ntoys; idx++) { 
    RooWorkspace* ws_toy = new RooWorkspace(*ws); 
         
    // main data 
    RooDataSet *toy=ws_toy->pdf(“model”)->generate(*ws_toy->var("mass"),Extended(true)); 
             
    // complementary data 
    ws_toy->var(“slope_mu”)->setVal(rnd.Gaus(ws_toy->var(“slope")->getVal(), 
        ws_toy->var("slope_sigma")->getVal())); 
             
    ws_toy->var("ns")->setConstant(false); 
    ws_toy->pdf("model")->fitTo(*toy,ExternalConstraints(*ws_toy->pdf("cons"))); 
         
    pull_ns->Fill((ws_toy->var(“ns")->getVal()-ws->var("ns")->getVal())/ 
                  ws_toy->var("ns")->getError()); 
    pull_slope->Fill((ws_toy->var(“slope")->getVal()-ws->var("slope")->getVal())/ 
                     ws_toy->var("slope")->getError()); 
   } 
. . . . . .

partial example_03.cc

Import�the�model�into�a�RooWorkspace 
from�previous�example

Fit�to�data�w/�fixed� 
signal�to�target�ns

Nominal�toy�generation

randomize�slope�mean

Display�the�pull�distributions



TOY MC WITH FULL FREQUENTIST APPROACH (III)
➤ The rest is just plotting and fit. 
➤ You can try to switch off the operation of 

randomizing slope mean, the pull distribution 
will definitely broken!
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. . . . . .  
  TCanvas *c1 = new TCanvas("c1","",400,800); 
  c1->Divide(1,2); 
  for (auto& hist : {pull_ns, pull_slope}) { 
      hist->SetStats(false); 
      hist->GetYaxis()->SetTitle("Entries"); 
  } 
  c1->cd(1); 
  pull_ns->GetXaxis()->SetTitle("Pull(ns)"); 
  pull_ns->Fit("gaus","L"); 
  c1->cd(2); 
  pull_slope->GetXaxis()->SetTitle("Pull(slope)"); 
  pull_slope->Fit("gaus","L"); 
     
  delete wspace; 
} 
   
void example_03() 
{  freq_toy(10.,1000); } 

partial example_03.cc
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void CL_scan(double *CLs, double *CLs_err, double target_ns = 10., . . .) 
{ 
  RooWorkspace *wspace = new RooWorkspace("wspace"); 
  buildModel(wspace); 
  double Q_thres[4] = {0.,0.,0.,0.}; 
   
  wspace->var("ns")->setMax(target_ns); 
  wspace->var("ns")->setVal(target_ns); 
  wspace->var("ns")->setConstant(false); 
  RooFitResult *res0 = wspace->pdf(“model”)->fitTo( 
    *wspace->data("data"),ExternalConstraints(*wspace->pdf("cons")),Save(true)); 
   
  wspace->var("ns")->setVal(target_ns); 
  wspace->var("ns")->setConstant(true); 
  RooFitResult *res1 = wspace->pdf(“model”)->fitTo( 
    *wspace->data("data"),ExternalConstraints(*wspace->pdf("cons")),Save(true)); 
   
  Q_thres[0] = max(0.,res1->minNll()-res0->minNll())*2.; // observed test stat 
. . . . . .

partial example_04.cc

MERGE THEM INTO THE CLS CALCULATION
➤ Now this is the real work: calculation of CLs according to the test 

statistic distributions from toy. 
➤ Recall: “LHC-style” takes the profiled likelihood ratio as the test 

statistic, and there is an upper bound in the minimization:
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Fit�#1:�everything�float,� 
but�ns<=target_ns

Fit�#2:�ns=target_ns,� 
minimizing�everything�else.

�2 ln
L(✓, �̂✓)

L(✓̂, �̂)



MERGE THEM INTO THE CLS CALCULATION (II)
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  vector<double> stat[2]; 
  for (int hypo=0; hypo<=1; hypo++) { 
    for (int idx=0; idx<ntoys; idx++) { 
      RooWorkspace* ws_toy = new RooWorkspace(*wspace); 
      if (hypo==0) ws_toy->var("ns")->setVal(0.); 
      if (hypo==1) ws_toy->var("ns")->setVal(target_ns); 
             
      // main data 
      RooDataSet *toy = ws_toy->pdf("model")->generate(*ws_toy->var("mass")); 
             
      // complementary data 
      ws_toy->var(“slope_mu")->setVal(rnd.Gaus( 
        ws_toy->var("slope")->getVal(),ws_toy->var("slope_sigma")->getVal())); 
             
      ws_toy->var("ns")->setVal(target_ns); 
      ws_toy->var("ns")->setConstant(false); 
      RooFitResult *res0 = ws_toy->pdf(“model”)->fitTo( 
        *toy,ExternalConstraints(*ws_toy->pdf("cons")),Save(true)); 

      ws_toy->var("ns")->setVal(target_ns); 
      ws_toy->var("ns")->setConstant(true); 
      RooFitResult *res1 = ws_toy->pdf(“model”)->fitTo( 
         *toy,ExternalConstraints(*ws_toy->pdf("cons")),Save(true)); 

      double Q = max(0.,res1->minNll()-res0->minNll())*2.; // sampled test stat 
      stat[hypo].push_back(Q); 
    } 
  }

partial example_04.cc

Either�b-only�or�s+b�
hypothesis

Fit�#1

Fit�#2

full�frequentist�approach



MERGE THEM INTO THE CLS CALCULATION (III)
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  sort(stat[0].begin(),stat[0].end()); 
  Q_thres[1] = stat[0][(int)(0.159*ntoys)]; // null expected 16% (-1s) 
  Q_thres[2] = stat[0][(int)(0.500*ntoys)]; // null expected 50% (median) 
  Q_thres[3] = stat[0][(int)(0.841*ntoys)]; // null expected 84% (+1s) 
     
  for (int type=0; type<4; type++) { 
    double CL[2] = {0.,0.}, CL_err[2] = {0.,0.}; 
      for (int hypo=0; hypo<=1; hypo++) { 
        for (int idx=0; idx<ntoys; idx++) 
          if (stat[hypo][idx]>=Q_thres[type]) CL[hypo] += 1.; 
        CL[hypo] /= (double)ntoys; 
        CL_err[hypo] = sqrt(CL[hypo]*(1.-CL[hypo])/ntoys); 
      } 
    CLs[type] = CL[1]/CL[0]; 
    if (CLs[type]>0.) CLs_err[type] =  
        sqrt(pow(CL_err[0]/CL[0],2)+pow(CL_err[1]/CL[1],2))*CLs[type]; 
  } 
     
  if (display) { 
. . . . . .  
  } 
     
  printf("Target ns = %.1f, observed:%.3f +- %.3f\n",target_ns,CLs[0],CLs_err[0]); 
  printf("16%% null expected: %.3f +- %.3f\n",CLs[1],CLs_err[1]); 
  printf("50%% null expected: %.3f +- %.3f\n",CLs[2],CLs_err[2]); 
  printf("84%% null expected: %.3f +- %.3f\n",CLs[3],CLs_err[3]);

partial example_04.cc

Same�method�as�the� 
previous�example

Also�the�same�as�before,�except�now�we�also�  
calculate�the�errors.
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MERGE THEM INTO THE CLS CALCULATION (IV)
➤ Almost the same as the previous example (except for a more complicated test 

statistic!) 
➤ In order to get the upper limit at the desired confidence level, one has to scan 

over the signal strength as well, e.g.
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void example_04a() 
{ 
  vector<double> vec_x, vec_obs,  
                 vec_obserr, vec_exp[3]; 
  double target_ns = 2.; 
  while (target_ns<=20.) { 
         
    double CLs[4], CLs_err[4]; 
    CL_scan(CLs,CLs_err,target_ns,1000); 
         
    vec_x.push_back(target_ns); 
    vec_obs.push_back(CLs[0]); 
    vec_obserr.push_back(CLs_err[0]); 
    vec_exp[0].push_back(CLs[1]); 
    vec_exp[1].push_back(CLs[2]); 
    vec_exp[2].push_back(CLs[3]); 
         
    target_ns += 2.; 
  } 
     
  TGraphErrors *gr_obs = new TGraphErrors( 
    vec_x.size(),vec_x.data(),vec_obs.data(),0,vec_obserr.data()); 
  TGraph *gr_exp = new TGraph(vec_x.size(),vec_x.data(),vec_exp[1].data()); 
  TGraph *gr_experr = new TGraph(vec_x.size()*2); 
. . . . . . 
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SCANNING OVER SIGNAL STRENGTH
➤ As we already did in the Poissonian example, a scanning over  the 

signal strength can be carried out in a similar way:
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partial example_04a.cc Observed limit @ 95% 
C.L. ~18 events 

Expected limit @ 95% 
C.L. ~7 events
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SCANNING OVER SIGNAL STRENGTH (II)
➤ You may try to run it with more toys as well as finer step. 

➤ Or, there is another data file contains no signal excess 
(example_bonly.root). If you replace it as the observed data, you 
can see now the “observed limit” is pretty much agree with the 
“expected limit”!
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SCANNING OVER SIGNAL STRENGTH (III)

49

➤ Note the previous calculate was always assumed the signal position 
(mass) is fixed at the given value. In principle one has to repeat the 
study for different signal assumption, e.g.
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SUMMARY
➤ In this lecture we touched the basis of 

hypotheses testing as well as the most-
adopted (and most confusing…) upper limit 
calculation method CLs in the LHC 
analyses. 

➤ This should allow you to go a little bit 
deeper, when producing an upper limit as 
your analysis result.  

➤ Now you should be able to do the same 
calculation as the official package!
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COMMENT: SKIPPED TOPICS
➤ We end our lecture here with the 

following topics skipped. If you are 
interested (or need for your own work), you 
are welcome to discuss with me offline.  
- Statistics in multivariate analysis; 
- Goodness-of-Fit test; 
- Kolmogorov test; 
- Asymptotic approximations in limit 

calculation; 
- Asimov data sets; 
- Look-Elsewhere Effect; 
- …and anything you can think of!
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